avatar
陈润泽 / Runze Chen
北京邮电大学软件工程博士在读

学术论文

  1. R. Chen, H. Luo, F. Zhao, X. Meng, Z. Xie, and Y. Zhu, “Modeling Accurate Human Activity Recognition for Embedded Devices Using Multi-level Distillation,” CoRR, vol. abs/2107.07331, 2021,Available: https://arxiv.org/abs/2107.07331

  2. Y. Zhu, H. Luo, R. Chen, F. Zhao, and S. Guo, “MSCPT: Toward Cross-Place Transportation Mode Recognition Based on Multi-Sensor Neural Network Model,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–13, 2021, doi: 10.1109/TITS.2021.3115264.

  3. Y. Zhu, H. Luo, F. Zhao, and R. Chen, “Indoor/Outdoor Switching Detection Using Multisensor DenseNet and LSTM,” IEEE Internet of Things Journal, vol. 8, no. 3, Art. no. 3, Feb. 2021, doi: 10.1109/JIOT.2020.3013853.

  4. 刘世泽, 朱奕达, 陈润泽, 罗海勇, 赵方, 孙艺, 王宝会. 基于残差时域注意力神经网络的交通模式识别算法[J]. 计算机应用, 2021, 41(06): 1557–1565.

  5. Y. Zhu, H. Luo, R. Chen, F. Zhao, and L. Su, “DenseNetX and GRU for the Sussex-Huawei Locomotion-Transportation Recognition Challenge,” in Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, Virtual Event, Mexico, 2020, pp. 373–377. doi: 10.1145/3410530.3414349.

  6. Y. Zhu, F. Zhao, and R. Chen, “Applying 1D Sensor DenseNet to Sussex-Huawei Locomotion-Transportation Recognition Challenge,” in Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, United Kingdom, 2019, pp. 873–877. doi: 10.1145/3341162.3345571.

  7. R. Chen, Z. Tian, H. Liu, F. Zhao, S. Zhang, and H. Liu, “Construction of a voice driven life assistant system for visually impaired people,” in 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), May 2018, pp. 87–92. doi: 10.1109/ICAIBD.2018.8396172.

软件著作权

  1. BeEYE盲人智能生活助手软件. 登记号: 2018SR510185. 软件开发完成日期: 2018年05月01日. 首次发表日期: 2018年05月01日. 登记日期: 2018年07月03日. 权利范围: 全部权利.