IMU人体行为识别(HAR)公开数据集
概述
基于IMU等传感器的人体行为识别(Human Activity Recognition,HAR)数据集,依照穿戴式传感器或手机传感器采集的原始数据判断用户的行为模式等状态。
名称 | 传感器模态 | 行为类别 | 传感器位置 | 频率 |
---|---|---|---|---|
Sussex-Huawei Locomotion 2020 | A, G, M, LA, R, P | 8 | 4 | 100Hz |
REALDISP | A, G, M, R | 33 | 9 | 50Hz |
PAMAP2 | T, A, G, M | 13 | 3 | 100Hz |
RealWorld HAR | A, G, M, L, GN, SL | 8 | 7 | 50Hz |
Smartphone | A, G | 6 | 1 | 50Hz |
HAPT | A, G | 12 | 1 | 50Hz |
DSADS | A, G, M | 19 | 5 | 25Hz |
MHEALTH | A, G, M, EC | 12 | 3 | 50Hz |
HTC-TMD | A, G, M | 10 | 1 | 50Hz |
USC-HAD | A, G | 12 | 1 | 100Hz |
其中传感器模态简称对照如下:
简称 | 传感器模态 |
---|---|
A | Accelerometer |
G | Gyroscope |
M | Magnetic Field |
R | Rotation Vector |
LA | Linear Vector |
P | Pressure |
T | Temperature |
L | Light |
GN | GNSS (Global Navigation Satellite System) |
SL | Sound Level |
EC | Electrocardiogram |
介绍
Sussex-Huawei Locomotion 2020 交通模式
属性 | 参数 |
---|---|
类别 | Still, Walk, Run, Bike, Car, Bus, Train, Subway |
传感器位置 | Torso, Bag, Hips, Torso |
传感器模态 | A, G, M, LA, R, P |
频率 | 100Hz |
大小 | 26.43GB |
源 | Sussex-Huawei Locomotion Challenge 2020 |
下载 | Train/Torso Train/Bag Train/Hips Train/Hand Validation Test Test/Labels |
提供者 | University of Sussex HUAWEI |
如果您将该数据集用于研究,请引用以下工作:
BibTeX
1 |
|
HTC-TMD 交通模式
属性 | 参数 |
---|---|
类别 | Still, Walk, Run, Bicycle, Motorcycle, Car, Bus, MRT, Train, HSR |
传感器位置 | 未知 |
传感器模态 | A, G, M |
频率 | 50Hz |
大小 | 18GB |
源 | HTC Research |
下载 | 评论获取 |
提供者 | HTC |
如果您将该数据集用于研究,请引用以下工作:
BibTeX
1 |
|
PAMAP2 行为模式
属性 | 参数 |
---|---|
类别 | Lying, Sitting, Standing, Walking, Running, Cycling, Nordic walking, Watching TV, Computer work, Car driving, Ascending stairs, Descending stairs |
传感器位置 | Wrist on the dominant arm, Chest, Dominant side's ankle |
传感器模态 | T, A, G, M |
频率 | 100Hz |
大小 | 656MB |
源 | UCI Machine Learning Repository |
下载 | 下载 README |
提供者 | University of California, Irvine |
如果您将该数据集用于研究,请引用以下工作:
BibTeX
1 |
|
RealWorld HAR 行为模式
属性 | 参数 |
---|---|
类别 | Walking, Running, Sitting, Standing, Lying, Stairs up, Stairs down, Jumping |
传感器位置 | Chest, Forearm, Head, Shin, Thigh, Upper arm, Waist |
传感器模态 | A, G, M, L, GN, SL |
频率 | 50Hz |
大小 | 3.5GB |
源 | Human Activity Recognition |
下载 | 下载 |
提供者 | University of Mannheim |
如果您将该数据集用于研究,请引用以下工作:
BibTex
1 |
|
Smartphone 行为模式
属性 | 参数 |
---|---|
类别 | Walking, Walking upstairs, Walking downstairs, Sitting, Standing, Laying |
传感器位置 | Waist |
传感器模态 | A, G |
频率 | 50Hz |
大小 | 58.2MB |
源 | UCI Machine Learning Repository |
下载 | 下载 |
提供者 | University of California, Irvine |
如果您将该数据集用于研究,请引用以下工作:
BibTex
1 |
|
HAPT 行为模式
属性 | 参数 |
---|---|
类别 | Standing, Sitting, Lying, Walking, Walking downstairs, Walking upstairs, Stand-to-sit, Sit-to-stand, Sit-to-lie, Lie-to-sit, Stand-to-lie, Lie-to-stand |
传感器位置 | 未知 |
传感器模态 | A, G |
频率 | 50Hz |
大小 | 75.9MB |
源 | UCI Machine Learning Repository |
下载 | 下载 |
提供者 | University of California, Irvine |
如果您将该数据集用于研究,请引用以下工作:
BibTex
1 |
|
MHEALTH 行为模式
属性 | 参数 |
---|---|
类别 | Standing still (1 min), Sitting and relaxing (1 min), Lying down (1 min), Walking (1 min), Climbing stairs (1 min), Waist bends forward (20x), Frontal elevation of arms (20x), Knees bending (crouching) (20x), Cycling (1 min), Jogging (1 min), Running (1 min), Jump front & back (20x) |
传感器位置 | Chest, Left ankle, Right ankle |
传感器模态 | A, G, M, EC |
频率 | 50Hz |
大小 | 72.1MB |
源 | UCI Machine Learning Repository |
下载 | 下载 |
提供者 | University of California, Irvine |
如果您将该数据集用于研究,请引用以下工作:
BibTex
1 |
|
USC-HAD 行为模式
属性 | 参数 |
---|---|
类别 | Walking forward, Walking left, Walking right, Walking upstairs, Walking downstairs, Running forward, Jumping, Sitting, Standing, Sleeping, Elevator up, Elevator down |
传感器位置 | Front right hip |
传感器模态 | A, G |
频率 | 100Hz |
大小 | 42.5MB |
源 | The USC-SIPI Human Activity Dataset |
下载 | 下载 |
提供者 | University of Southern California |
如果您将该数据集用于研究,请引用以下工作:
BibTex
1 |
|
DSADS 运动模式
属性 | 参数 |
---|---|
类别 | Sitting, Standing, Lying on back, Lying on right side, Ascending stairs, Descending stairs, Standing in an elevator still, Moving around in an elevator,Walking in a parking lot, Walking on a treadmill with a speed of 4 km/h in flat, Walking on a treadmill with a speed of 4 km/h in 15 deg inclined positions), Running on a treadmill with a speed of 8 km/h, Exercising on a stepper, Exercising on a cross trainer, Cycling on an exercise bike in horizontal, Cycling on an exercise bike in vertical positions, Rowing, Jumping, Playing basketball |
传感器位置 | Torso, Right arm, Left arm, Right leg, Left leg |
传感器模态 | A, G, M |
频率 | 25Hz |
大小 | 163MB |
源 | UCI Machine Learning Repository |
下载 | 下载 |
提供者 | University of California, Irvine |
如果您将该数据集用于研究,请引用以下工作:
BibTex
1 |
|
REALDISP 运动模式
属性 | 参数 |
---|---|
类别 | Walking, Jogging, Running, Jump up, Jump front & back, Jump sideways, Jump leg/arms open/closed, Jump rope, Trunk twist (arms outstretched), Trunk twist (elbows bent), Waist bends forward, Waist rotation, Waist bends (reach foot with opposite hand), Reach heels backwards, Lateral bend (10 to the left + 10 to the right), Lateral bend with arm up (10 to the left + 10 to the right), Repetitive forward stretching, Upper trunk and lower body opposite twist, Lateral elevation of arms, Frontal elevation of arms, Frontal hand claps, Frontal crossing of arms, Shoulders high-amplitude rotation, Shoulders low-amplitude rotation, Arms inner rotation, Knees (alternating) to the breast, Heels (alternating) to the backside, Knees bending (crouching), Knees (alternating) bending forward, Rotation on the knees, Rowing, Elliptical bike, Cycling |
传感器位置 | Right lower arm (RLA), Right upper arm (RUA), Back (BACK), Left upper arm (LUA), Left lower arm (LLA), Right calf (RC), Right thigh (RT), Left thigh (LT), Left calf (LC) |
传感器模态 | A, G, M, R |
频率 | 50Hz |
大小 | 2.5GB |
源 | UCI Machine Learning Repository |
下载 | 下载 |
提供者 | University of California, Irvine |
如果您将该数据集用于研究,请引用以下工作:
BibTex
1 |
|
其他
欢迎大家评论补充其他相关数据集,我会陆续继续补充。
IMU人体行为识别(HAR)公开数据集
https://waterch.cn/2021/11/02/Public-HAR-Datasets/