IMU人体行为识别(HAR)公开数据集

概述

基于IMU等传感器的人体行为识别(Human Activity Recognition,HAR)数据集,依照穿戴式传感器或手机传感器采集的原始数据判断用户的行为模式等状态。

名称 传感器模态 行为类别 传感器位置 频率
Sussex-Huawei Locomotion 2020 A, G, M, LA, R, P 8 4 100Hz
REALDISP A, G, M, R 33 9 50Hz
PAMAP2 T, A, G, M 13 3 100Hz
RealWorld HAR A, G, M, L, GN, SL 8 7 50Hz
Smartphone A, G 6 1 50Hz
HAPT A, G 12 1 50Hz
DSADS A, G, M 19 5 25Hz
MHEALTH A, G, M, EC 12 3 50Hz
HTC-TMD A, G, M 10 1 50Hz
USC-HAD A, G 12 1 100Hz

其中传感器模态简称对照如下:

简称 传感器模态
A Accelerometer
G Gyroscope
M Magnetic Field
R Rotation Vector
LA Linear Vector
P Pressure
T Temperature
L Light
GN GNSS (Global Navigation Satellite System)
SL Sound Level
EC Electrocardiogram

介绍

Sussex-Huawei Locomotion 2020 交通模式

属性 参数
类别 Still, Walk, Run, Bike, Car, Bus, Train, Subway
传感器位置 Torso, Bag, Hips, Torso
传感器模态 A, G, M, LA, R, P
频率 100Hz
大小 26.43GB
Sussex-Huawei Locomotion Challenge 2020
下载 Train/Torso Train/Bag Train/Hips Train/Hand Validation Test Test/Labels
提供者 University of Sussex
HUAWEI

如果您将该数据集用于研究,请引用以下工作:

BibTeX

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
@article{DBLP:journals/access/GjoreskiCWMMVR18,
author = {Hristijan Gjoreski and
Mathias Ciliberto and
Lin Wang and
Francisco Javier Ord{\'{o}}{\~{n}}ez Morales and
Sami Mekki and
Stefan Valentin and
Daniel Roggen},
title = {The University of Sussex-Huawei Locomotion and Transportation Dataset
for Multimodal Analytics With Mobile Devices},
journal = {{IEEE} Access},
volume = {6},
pages = {42592--42604},
year = {2018},
url = {https://doi.org/10.1109/ACCESS.2018.2858933},
doi = {10.1109/ACCESS.2018.2858933},
timestamp = {Mon, 15 Jun 2020 16:51:57 +0200},
biburl = {https://dblp.org/rec/journals/access/GjoreskiCWMMVR18.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/access/WangGCMVR19,
author = {Lin Wang and
Hristijan Gjoreski and
Mathias Ciliberto and
Sami Mekki and
Stefan Valentin and
Daniel Roggen},
title = {Enabling Reproducible Research in Sensor-Based Transportation Mode
Recognition With the Sussex-Huawei Dataset},
journal = {{IEEE} Access},
volume = {7},
pages = {10870--10891},
year = {2019},
url = {https://doi.org/10.1109/ACCESS.2019.2890793},
doi = {10.1109/ACCESS.2019.2890793},
timestamp = {Thu, 14 Feb 2019 15:07:35 +0100},
biburl = {https://dblp.org/rec/journals/access/WangGCMVR19.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DBLP:conf/huc/WangGM0R18,
author = {Lin Wang and
Hristijan Gjoreski and
Kazuya Murao and
Tsuyoshi Okita and
Daniel Roggen},
title = {Summary of the Sussex-Huawei Locomotion-Transportation Recognition
Challenge},
booktitle = {Proceedings of the 2018 {ACM} International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous Computing and
Wearable Computers, UbiComp/ISWC 2018 Adjunct, Singapore, October
08-12, 2018},
pages = {1521--1530},
publisher = {{ACM}},
year = {2018},
url = {https://doi.org/10.1145/3267305.3267519},
doi = {10.1145/3267305.3267519},
timestamp = {Thu, 14 Oct 2021 10:35:41 +0200},
biburl = {https://dblp.org/rec/conf/huc/WangGM0R18.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DBLP:conf/huc/WangGCMVR18,
author = {Lin Wang and
Hristijan Gjoreski and
Mathias Ciliberto and
Sami Mekki and
Stefan Valentin and
Daniel Roggen},
title = {Benchmarking the {SHL} Recognition Challenge with Classical and Deep-Learning
Pipelines},
booktitle = {Proceedings of the 2018 {ACM} International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous Computing and
Wearable Computers, UbiComp/ISWC 2018 Adjunct, Singapore, October
08-12, 2018},
pages = {1626--1635},
publisher = {{ACM}},
year = {2018},
url = {https://doi.org/10.1145/3267305.3267531},
doi = {10.1145/3267305.3267531},
timestamp = {Mon, 15 Jun 2020 17:10:43 +0200},
biburl = {https://dblp.org/rec/conf/huc/WangGCMVR18.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DBLP:conf/huc/WangGCLM0R19,
author = {Lin Wang and
Hristijan Gjoreski and
Mathias Ciliberto and
Paula Lago and
Kazuya Murao and
Tsuyoshi Okita and
Daniel Roggen},
editor = {Robert Harle and
Katayoun Farrahi and
Nicholas D. Lane},
title = {Summary of the Sussex-Huawei locomotion-transportation recognition
challenge 2019},
booktitle = {Proceedings of the 2019 {ACM} International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2019 {ACM} International
Symposium on Wearable Computers, UbiComp/ISWC 2019 Adjunct, London,
UK, September 9-13, 2019},
pages = {849--856},
publisher = {{ACM}},
year = {2019},
url = {https://doi.org/10.1145/3341162.3344872},
doi = {10.1145/3341162.3344872},
timestamp = {Thu, 14 Oct 2021 10:35:34 +0200},
biburl = {https://dblp.org/rec/conf/huc/WangGCLM0R19.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

HTC-TMD 交通模式

属性 参数
类别 Still, Walk, Run, Bicycle, Motorcycle, Car, Bus, MRT, Train, HSR
传感器位置 未知
传感器模态 A, G, M
频率 50Hz
大小 18GB
HTC Research
下载 评论获取
提供者 HTC

如果您将该数据集用于研究,请引用以下工作:

BibTeX

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
@article{DBLP:journals/pvldb/YuYWLC14,
author = {Meng{-}Chieh Yu and
Tong Yu and
Shao{-}Chen Wang and
Chih{-}Jen Lin and
Edward Y. Chang},
title = {Big Data Small Footprint: The Design of {A} Low-Power Classifier for
Detecting Transportation Modes},
journal = {Proc. {VLDB} Endow.},
volume = {7},
number = {13},
pages = {1429--1440},
year = {2014},
url = {http://www.vldb.org/pvldb/vol7/p1429-yu.pdf},
doi = {10.14778/2733004.2733015},
timestamp = {Sun, 24 May 2020 16:55:40 +0200},
biburl = {https://dblp.org/rec/journals/pvldb/YuYWLC14.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

PAMAP2 行为模式

属性 参数
类别 Lying, Sitting, Standing, Walking, Running, Cycling, Nordic walking, Watching TV, Computer work, Car driving, Ascending stairs, Descending stairs
传感器位置 Wrist on the dominant arm, Chest, Dominant side's ankle
传感器模态 T, A, G, M
频率 100Hz
大小 656MB
UCI Machine Learning Repository
下载 下载 README
提供者 University of California, Irvine

如果您将该数据集用于研究,请引用以下工作:

BibTeX

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
@inproceedings{DBLP:conf/iswc/ReissS12,
author = {Attila Reiss and
Didier Stricker},
title = {Introducing a New Benchmarked Dataset for Activity Monitoring},
booktitle = {16th International Symposium on Wearable Computers, {ISWC} 2012, Newcastle,
United Kingdom, June 18-22, 2012},
pages = {108--109},
publisher = {{IEEE} Computer Society},
year = {2012},
url = {https://doi.org/10.1109/ISWC.2012.13},
doi = {10.1109/ISWC.2012.13},
timestamp = {Wed, 16 Oct 2019 14:14:52 +0200},
biburl = {https://dblp.org/rec/conf/iswc/ReissS12.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DBLP:conf/petra/ReissS12,
author = {Attila Reiss and
Didier Stricker},
editor = {Fillia Makedon},
title = {Creating and benchmarking a new dataset for physical activity monitoring},
booktitle = {The 5th International Conference on PErvasive Technologies Related
to Assistive Environments, {PETRA} 2012, Heraklion, Crete, Greece,
June 6-9, 2012},
pages = {40},
publisher = {{ACM}},
year = {2012},
url = {https://doi.org/10.1145/2413097.2413148},
doi = {10.1145/2413097.2413148},
timestamp = {Tue, 06 Nov 2018 16:58:58 +0100},
biburl = {https://dblp.org/rec/conf/petra/ReissS12.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

RealWorld HAR 行为模式

属性 参数
类别 Walking, Running, Sitting, Standing, Lying, Stairs up, Stairs down, Jumping
传感器位置 Chest, Forearm, Head, Shin, Thigh, Upper arm, Waist
传感器模态 A, G, M, L, GN, SL
频率 50Hz
大小 3.5GB
Human Activity Recognition
下载 下载
提供者 University of Mannheim

如果您将该数据集用于研究,请引用以下工作:

BibTex

1
2
3
4
5
6
7
8
9
10
11
12
  @inproceedings{sztyler2016onbody,
title={On-body Localization of Wearable Devices: An Investigation of Position-Aware Activity Recognition},
author={Sztyler, Timo and Stuckenschmidt, Heiner},
booktitle={2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)},
pages={1--9},
year={2016},
eventdate={2016-03-14/2016-03-18},
venue={Sydney, Australia},
publisher={IEEE Computer Society},
doi={10.1109/PERCOM.2016.7456521},
note={http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7456521}
}

Smartphone 行为模式

属性 参数
类别 Walking, Walking upstairs, Walking downstairs, Sitting, Standing, Laying
传感器位置 Waist
传感器模态 A, G
频率 50Hz
大小 58.2MB
UCI Machine Learning Repository
下载 下载
提供者 University of California, Irvine

如果您将该数据集用于研究,请引用以下工作:

BibTex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
@inproceedings{DBLP:conf/esann/AnguitaGOPR13,
author = {Davide Anguita and
Alessandro Ghio and
Luca Oneto and
Xavier Parra and
Jorge Luis Reyes{-}Ortiz},
title = {A Public Domain Dataset for Human Activity Recognition using Smartphones},
booktitle = {21st European Symposium on Artificial Neural Networks, {ESANN} 2013,
Bruges, Belgium, April 24-26, 2013},
year = {2013},
url = {http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf},
timestamp = {Thu, 15 Jul 2021 17:38:03 +0200},
biburl = {https://dblp.org/rec/conf/esann/AnguitaGOPR13.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

HAPT 行为模式

属性 参数
类别 Standing, Sitting, Lying, Walking, Walking downstairs, Walking upstairs, Stand-to-sit, Sit-to-stand, Sit-to-lie, Lie-to-sit, Stand-to-lie, Lie-to-stand
传感器位置 未知
传感器模态 A, G
频率 50Hz
大小 75.9MB
UCI Machine Learning Repository
下载 下载
提供者 University of California, Irvine

如果您将该数据集用于研究,请引用以下工作:

BibTex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
@article{DBLP:journals/ijon/Reyes-OrtizOSPA16,
author = {Jorge Luis Reyes{-}Ortiz and
Luca Oneto and
Albert Sam{\`{a}} and
Xavier Parra and
Davide Anguita},
title = {Transition-Aware Human Activity Recognition Using Smartphones},
journal = {Neurocomputing},
volume = {171},
pages = {754--767},
year = {2016},
url = {https://doi.org/10.1016/j.neucom.2015.07.085},
doi = {10.1016/j.neucom.2015.07.085},
timestamp = {Sat, 24 Nov 2018 11:58:30 +0100},
biburl = {https://dblp.org/rec/journals/ijon/Reyes-OrtizOSPA16.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

MHEALTH 行为模式

属性 参数
类别 Standing still (1 min), Sitting and relaxing (1 min), Lying down (1 min), Walking (1 min), Climbing stairs (1 min), Waist bends forward (20x), Frontal elevation of arms (20x), Knees bending (crouching) (20x), Cycling (1 min), Jogging (1 min), Running (1 min), Jump front & back (20x)
传感器位置 Chest, Left ankle, Right ankle
传感器模态 A, G, M, EC
频率 50Hz
大小 72.1MB
UCI Machine Learning Repository
下载 下载
提供者 University of California, Irvine

如果您将该数据集用于研究,请引用以下工作:

BibTex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
@inproceedings{DBLP:conf/iwaal/BanosGHDPRSV14,
author = {Oresti Ba{\~{n}}os and
Rafael Garc{\'{\i}}a and
Juan Antonio Holgado Terriza and
Miguel Damas and
H{\'{e}}ctor Pomares and
Ignacio Rojas Ruiz and
Alejandro Saez and
Claudia Villalonga},
editor = {Leandro Pecchia and
Liming Luke Chen and
Chris D. Nugent and
Jos{\'{e}} Bravo},
title = {mHealthDroid: {A} Novel Framework for Agile Development of Mobile
Health Applications},
booktitle = {Ambient Assisted Living and Daily Activities - 6th International Work-Conference,
{IWAAL} 2014, Belfast, UK, December 2-5, 2014. Proceedings},
series = {Lecture Notes in Computer Science},
volume = {8868},
pages = {91--98},
publisher = {Springer},
year = {2014},
url = {https://doi.org/10.1007/978-3-319-13105-4\_14},
doi = {10.1007/978-3-319-13105-4\_14},
timestamp = {Sun, 25 Jul 2021 11:43:38 +0200},
biburl = {https://dblp.org/rec/conf/iwaal/BanosGHDPRSV14.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{Banos2015,
author = {Banos, Oresti and Villalonga, Claudia and Garcia, Rafael and Saez, Alejandro and Damas, Miguel and Holgado-Terriza, Juan A. and Lee, Sungyong and Pomares, Hector and Rojas, Ignacio},
da = {2015/08/13},
doi = {10.1186/1475-925X-14-S2-S6},
id = {Banos2015},
isbn = {1475-925X},
journal = {BioMedical Engineering OnLine},
number = {2},
pages = {S6},
title = {Design, implementation and validation of a novel open framework for agile development of mobile health applications},
ty = {JOUR},
url = {https://doi.org/10.1186/1475-925X-14-S2-S6},
volume = {14},
year = {2015}
}

USC-HAD 行为模式

属性 参数
类别 Walking forward, Walking left, Walking right, Walking upstairs, Walking downstairs, Running forward, Jumping, Sitting, Standing, Sleeping, Elevator up, Elevator down
传感器位置 Front right hip
传感器模态 A, G
频率 100Hz
大小 42.5MB
The USC-SIPI Human Activity Dataset
下载 下载
提供者 University of Southern California

如果您将该数据集用于研究,请引用以下工作:

BibTex

1
2
3
4
5
6
7
8
9
@inproceedings{mi12:ubicomp-sagaware,
author = {Mi Zhang and Alexander A. Sawchuk},
title = {USC-HAD: A Daily Activity Dataset for Ubiquitous Activity Recognition Using Wearable Sensors},
booktitle = {ACM International Conference on Ubiquitous Computing (Ubicomp) Workshop on Situation, Activity and Goal Awareness (SAGAware)},
pages = {},
address = {Pittsburgh, Pennsylvania, USA},
month = {September},
year = {2012}
}

DSADS 运动模式

属性 参数
类别 Sitting, Standing, Lying on back, Lying on right side, Ascending stairs, Descending stairs, Standing in an elevator still, Moving around in an elevator,Walking in a parking lot, Walking on a treadmill with a speed of 4 km/h in flat, Walking on a treadmill with a speed of 4 km/h in 15 deg inclined positions), Running on a treadmill with a speed of 8 km/h, Exercising on a stepper, Exercising on a cross trainer, Cycling on an exercise bike in horizontal, Cycling on an exercise bike in vertical positions, Rowing, Jumping, Playing basketball
传感器位置 Torso, Right arm, Left arm, Right leg, Left leg
传感器模态 A, G, M
频率 25Hz
大小 163MB
UCI Machine Learning Repository
下载 下载
提供者 University of California, Irvine

如果您将该数据集用于研究,请引用以下工作:

BibTex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
@article{DBLP:journals/pr/AltunBT10,
author = {Kerem Altun and
Billur Barshan and
Orkun Tun{\c{c}}el},
title = {Comparative study on classifying human activities with miniature inertial
and magnetic sensors},
journal = {Pattern Recognit.},
volume = {43},
number = {10},
pages = {3605--3620},
year = {2010},
url = {https://doi.org/10.1016/j.patcog.2010.04.019},
doi = {10.1016/j.patcog.2010.04.019},
timestamp = {Mon, 24 Feb 2020 08:29:59 +0100},
biburl = {https://dblp.org/rec/journals/pr/AltunBT10.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/cj/BarshanY14,
author = {Billur Barshan and
Murat Cihan Y{\"{u}}ksek},
title = {Recognizing Daily and Sports Activities in Two Open Source Machine
Learning Environments Using Body-Worn Sensor Units},
journal = {Comput. J.},
volume = {57},
number = {11},
pages = {1649--1667},
year = {2014},
url = {https://doi.org/10.1093/comjnl/bxt075},
doi = {10.1093/comjnl/bxt075},
timestamp = {Sat, 19 Oct 2019 19:10:54 +0200},
biburl = {https://dblp.org/rec/journals/cj/BarshanY14.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DBLP:conf/icpr/AltunB10,
author = {Kerem Altun and
Billur Barshan},
editor = {Albert Ali Salah and
Theo Gevers and
Nicu Sebe and
Alessandro Vinciarelli},
title = {Human Activity Recognition Using Inertial/Magnetic Sensor Units},
booktitle = {Human Behavior Understanding, First International Workshop, {HBU}
2010, Istanbul, Turkey, August 22, 2010. Proceedings},
series = {Lecture Notes in Computer Science},
volume = {6219},
pages = {38--51},
publisher = {Springer},
year = {2010},
url = {https://doi.org/10.1007/978-3-642-14715-9\_5},
doi = {10.1007/978-3-642-14715-9\_5},
timestamp = {Sat, 19 Oct 2019 20:00:36 +0200},
biburl = {https://dblp.org/rec/conf/icpr/AltunB10.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

REALDISP 运动模式

属性 参数
类别 Walking, Jogging, Running, Jump up, Jump front & back, Jump sideways, Jump leg/arms open/closed, Jump rope, Trunk twist (arms outstretched), Trunk twist (elbows bent), Waist bends forward, Waist rotation, Waist bends (reach foot with opposite hand), Reach heels backwards, Lateral bend (10 to the left + 10 to the right), Lateral bend with arm up (10 to the left + 10 to the right), Repetitive forward stretching, Upper trunk and lower body opposite twist, Lateral elevation of arms, Frontal elevation of arms, Frontal hand claps, Frontal crossing of arms, Shoulders high-amplitude rotation, Shoulders low-amplitude rotation, Arms inner rotation, Knees (alternating) to the breast, Heels (alternating) to the backside, Knees bending (crouching), Knees (alternating) bending forward, Rotation on the knees, Rowing, Elliptical bike, Cycling
传感器位置 Right lower arm (RLA), Right upper arm (RUA), Back (BACK), Left upper arm (LUA), Left lower arm (LLA), Right calf (RC), Right thigh (RT), Left thigh (LT), Left calf (LC)
传感器模态 A, G, M, R
频率 50Hz
大小 2.5GB
UCI Machine Learning Repository
下载 下载
提供者 University of California, Irvine

如果您将该数据集用于研究,请引用以下工作:

BibTex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
@article{DBLP:journals/sensors/BanosTDPR14,
author = {Oresti Ba{\~{n}}os and
M{\'{a}}t{\'{e}} Attila T{\'{o}}th and
Miguel Damas and
H{\'{e}}ctor Pomares and
Ignacio Rojas},
title = {Dealing with the Effects of Sensor Displacement in Wearable Activity
Recognition},
journal = {Sensors},
volume = {14},
number = {6},
pages = {9995--10023},
year = {2014},
url = {https://doi.org/10.3390/s140609995},
doi = {10.3390/s140609995},
timestamp = {Wed, 14 Nov 2018 10:47:49 +0100},
biburl = {https://dblp.org/rec/journals/sensors/BanosTDPR14.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DBLP:conf/huc/BanosDPRTA12,
author = {Oresti Ba{\~{n}}os and
Miguel Damas and
H{\'{e}}ctor Pomares and
Ignacio Rojas and
M{\'{a}}t{\'{e}} Attila T{\'{o}}th and
Oliver Amft},
editor = {Anind K. Dey and
Hao{-}Hua Chu and
Gillian R. Hayes},
title = {A benchmark dataset to evaluate sensor displacement in activity recognition},
booktitle = {The 2012 {ACM} Conference on Ubiquitous Computing, Ubicomp '12, Pittsburgh,
PA, USA, September 5-8, 2012},
pages = {1026--1035},
publisher = {{ACM}},
year = {2012},
url = {https://doi.org/10.1145/2370216.2370437},
doi = {10.1145/2370216.2370437},
timestamp = {Tue, 29 Dec 2020 18:39:29 +0100},
biburl = {https://dblp.org/rec/conf/huc/BanosDPRTA12.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

其他

欢迎大家评论补充其他相关数据集,我会陆续继续补充。


IMU人体行为识别(HAR)公开数据集
https://waterch.cn/2021/11/02/Public-HAR-Datasets/
作者
Runze Chen
发布于
2021年11月2日
许可协议